Еще один вариант регулирования подписи.
Пользователь, имеющий уровень допуска "1" или выше, может подписывать сколько угодно много пользователей, но с соблюдением следующих принципов:
1. Каждому подписываемому пользователю достается уровень надежности H(1)/(количество подписанных пользователей). H(1) - начальный коэффициент надежности, задаваемый системой.
2. Если при подписывании следующего пользователя, уровень надежности одного из уже подписанных снизиться ниже "1", подпись запрещается.
3. Подписывать пользователей могут только пользователи с уровнем надежности "1" или выше.
4. Подписание дает пользователю "надежность" с определенным коэффициентом меньшим 1 (величина H(1)). Т.е. для получения одним пользователем уровня надежности "1" или выше, необходимо несколько подписей.
6. Пользователю запрещается подписывать сертификаты тех пользователей, которые подписали его сертификат.
Если взять вариант двух пользователей с коэффициентом > 0.5 (т.е. два пользователя имеют право подписать третьего), тогда такая подпись будет регулироваться формулой:
H(n) = H(1)+H(1)/n;
где H(n) - коэффициент подписи передаваемый n-му подписываемому.
Таким образом, если приравнять H(n) = 1, можно найти сколько пользователей можно подписать в данном случае в зависимости от начального значения H(1) (передаваемый коэффициент при подписывании одного пользователя):
n = H(1)/(1 - H(1));
Например, при H(1) = 0.9, два пользователя могут подписать 9 пользователей.
Можно найти так-же величину H(1) для того что-бы два пользователя могли подписать определенное количество пользователей:
H(1) = 1/(1 + 1/n);
Например, для того что-бы два пользователя могли подписать 1000 пользователей, коэффициент H(1) должен быть 0,999000999. Вполне возможно что таким образом можно попробовать регулировать возможности подписывания с течением времени.
Кроме того, необходимо, конечно, рассмотреть и варианты не с двумя, а с большим количеством начальных пользователей. Ситуация несколько усложнится с математической точки зрения, поэтому предлагаю ее попробовать описать тем кто более силен в таких операциях.